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Abstract—This paper explores an innovative method for dis-
tributed state estimation aimed at reducing computational com-
plexity while detecting sensor faults in natural gas pipelines.
The proposed framework utilizes a partial-distributed ensemble
Kalman filter (EnKF), comprising linear local filters and a non-
linear main filter. The main filter handles non-linear computa-
tions during the time update, while the simultaneous operation
of linear local filters manages linear computations during the
measurement update. These local filters generate distinct local
state estimates based on their specific sensor measurements,
which are then transmitted to an information mixer to compute
fault-free state estimates. Moreover, a fault diagnosis strategy is
developed using local state variances and residuals. Faulty sensors
are identified and isolated by comparing these metrics against
a threshold. Additionally, an adaptive thresholding approach
is incorporated to enhance effective fault identification. The
effectiveness of the proposed technique is demonstrated in sys-
tems characterized by high nonlinearity and dimensionality, and
featuring simultaneous multiple sensor faults, through extensive
simulations and comparative analyses.

Index Terms—Partial-distributed ensemble Kalman filter,
model-based technique, state estimation, fault diagnosis, adaptive
threshold, multiple sensor faults, natural-gas pipelines.

I. INTRODUCTION

T IMELY monitoring of natural gas pipelines is crucial for
ensuring the overall safety and reliability of the system.

As digital technologies advance, numerous monitoring systems
have emerged for urban gas pipelines to detect potential
leaks [1], [2]. These systems employ several gas-monitoring
sensors to continuously observe gas pipelines, intending to
identify potential leaks and enhance the reliability of pipeline
infrastructures [3], [4], [5]. However, sensors installed in the
pipelines may occasionally malfunction, resulting in delayed
or overlooked leak detections, potentially causing severe fail-
ures [6]. Therefore, there is a critical need to develop effective
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techniques for timely identifying sensor faults within gas-
monitoring systems.

Sensor fault diagnosis techniques can be broadly categorized
into two groups: data-driven [7] and model-based approaches
[8]. Data-driven methods utilize real-time or historical data
for sensor fault diagnosis, relying on extensive databases
that render them impractical for real-time applications [9],
[10]. In contrast, model-based methods solely depend on an
accurate system model. These approaches identify faults by
comparing actual process measurements with model-predicted
values [11]. Among model-based methods, the Kalman filter
(KF) and its variants are widely preferred for their robustness
and effectiveness in optimal state estimation [12], [13]. In the
context of large distributed systems, there are two prevalent
architectures for the KF: centralized and distributed. In the
centralized architecture, a single central filtering unit processes
the sensor data. Further, this approach possesses high accuracy
while offering substantial computations for large-scale systems
with numerous sensors [13]–[15]. On the other hand, the
distributed architectures employ multiple local filters that work
in parallel, with their outputs combined through a master filter.
This approach reduces overall computations and improves
decision-making capabilities [16]–[19].

In [20], the sensor and process fault diagnosis is investi-
gated using both distributed and centralized multi-sensor data
fusion architectures, incorporating adaptive extended Kalman
filter (EKF) techniques. The centralized architecture ensures
high estimation accuracy using a single filter, however, it is
less robust against sensor faults. Conversely, the distributed
architecture, employing distinct local filters for each sensor,
faces challenges in handling nonlinearities and multiple sensor
faults. In [21], a sensor-fusion strategy is presented, employing
multiple KFs customized for specific defects in nonlinear
systems. However, this approach is constrained by significant
computational costs. In [22], a sensor-fusion technique based
on the unscented Kalman filter (UKF) is investigated for
monitoring a gas turbine engine, involving four different
combinations of local filters for the installed sensors. However,
this method encounters difficulties in effectively identifying
multiple sensor faults. Moreover, [23] developed a UKF-based
distributed sensor-fusion system for microgrid applications.
Nevertheless, it is primarily designed for single-fault scenarios
and becomes computationally intensive when dealing with
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multiple sensor faults. In addition, [24], [25] address the fault
diagnosis using distributed filtering in natural gas pipelines,
with a primary focus on addressing single-sensor faults. Fur-
thermore, the work in [26] utilizes an EKF-based partially
distributed architecture to detect single sensor and process
faults in a gas turbine engine. However, it is not well-suited for
addressing multiple sensor faults in highly nonlinear and large-
scale systems. Moreover, [27] addresses the issue of simulta-
neous multiple sensor faults in natural gas pipelines using an
ensemble Kalman filter (EnKF)-based distributed architecture.
However, this approach faces substantial computational costs
due to its fully distributed structure.

The existing distributed fault diagnosis methods present a
notable challenge due to their elevated computational com-
plexity, particularly in the case of large-scale systems en-
compassing numerous subsystems or local filters. In these
systems, each subsystem typically requires repetitive nonlinear
calculations associated with the system model, leading to a
substantial increase in overall computational burden. To ad-
dress these challenges, it is essential to develop new distributed
architectures that reduce redundant nonlinear computations
and effectively handle multiple sensor faults while maintaining
low computational complexity.

In this paper, we design an innovative partial-distributed
architecture based on EnKF, aiming to address the compu-
tational challenges associated with nonlinear state estimation
and enable effective diagnosis of multiple sensor faults in
natural gas pipelines. The proposed framework separates the
nonlinear computations from the local filters and delegates
them to the main filter. The main filter handles the time
update and information fusion, while the local filters fo-
cus on the measurement updates, resulting in a significant
reduction in the overall system’s computational complexity
and improving the fault diagnosis capabilities. The EnKF-
based architecture provides specific advantages, particularly
in dealing with high-dimensional and non-linear system of
natural-gas pipeline [28]. It also enhances computational ef-
ficiency and overall decision-making compared to the con-
ventional distributed architecture. Additionally, a novel fault-
tolerant approach based on local state variance and residual
is introduced. This approach monitors these metrics against a
threshold for fault identification and facilitates the isolation of
faulty state estimates from the information fusion process. To
further improve detection accuracy, an adaptive thresholding
technique is also incorporated that can dynamically adjust the
threshold value based on evolving system dynamics. The final
global estimate is obtained by combining all the non-faulty
local filter estimates using the information fusion.

The structure of the paper is as follows: Section II elaborates
on the system model of natural gas pipelines; the development
of the sensor fault detection, isolation and accommodation
(SFDIA) architecture is detailed in Section III; the presentation
and discussion of the achieved performance are covered in
Section IV; and Section V provides concluding remarks.

II. NATURAL GAS TRANSIENT FLOW MODEL

The system model characterizing the transient flow of
natural gas in pipelines can be expressed by a set of hyperbolic
partial differential equations (PDEs) [29], given as

∂x

∂t
+A(x)

∂x

∂s
+ ζ(x) = 0 , (1)

where the symbol s and t represent space and time, respec-
tively. The spatial and temporal dynamics can be collectively
defined as Ω = {(s, t) : 0 ≤ s ≤ L, 0 ≤ t ≤ tf}, where L and
tf denote the pipeline length and the time period, respectively.
Additionally, the vector x = [p, ṁ, T ]T represents the state
vector, where p, ṁ and T denote pressure, flow rate and
temperature, respectively, and the matrix A(x) ∈ R3×3

signifies the coefficient matrix, given by Eq. (2) [30], [31].
Further, the vector ζ(x) ∈ R3×1 can be defined as

ζ(x)=
[
−a2

sα1(Aqp+RTṁwz)
A2TCpp

w −a2
sα2(Aqp+RTṁwz)

A2Cpp2

]T
,

where α1 = 1 + T
z

(
∂z
∂T

)
p
, α2 = 1 − p

z

(
∂z
∂p

)
T

. The symbols
as z, R, Cp, A, q, w, and ρ represent the isentropic wave
speed, gas compressibility factor, ideal gas constant, specific
heat at constant pressure, cross-sectional area, heat flow per
unit length and time, frictional force per unit length of the pipe
and density, respectively [32]. Furthermore, the transport and
thermodynamic properties, specifically z and Cp, are obtained
using the GERG-2004 [33].

Further, the numerical method of lines is applied to solve
the transient model, utilizing spatial discretization to convert
the system of PDEs into a set of ordinary differential equations
(ODEs) [34]. A 5-point, fourth-order finite difference method
that introduces an error of order O(∆s4), where ∆s denotes
the spatial step size, is employed to convert the system of
PDEs in (1). The system of ODEs obtained after spatial
discretization can be expressed as

dx(t)

dt
= B(x)Dx(t)− Γ(x, t) ≜ φ(t,x(t)) , (3)

where B(x) ∈ R3n×3n and Γ(x, t) ∈ R3n×1

denote the assembled matrix of A(x) and the
assembled column vector of ζ(x), respectively. The
computational matrix D is given in [29] and the
modified state vector x(t) can be expressed as x(t) =
[p1(t), . . ., pi(t), . . ., pn(t), ṁ1(t), . . ., ṁi(t), . . ., ṁn(t), T1(t),
, . . ., Ti(t), . . ., Tn(t)]

T . The system of ODEs can be further
converted into a state-space model using an effective
numerical technique known as the fourth-order Runge-Kutta
method [27]. When discretized using a constant time step,
the progression of the solution over time can be described as

xk+1 = xk +
∆t

6
(k1 + 2k2 + 2k3 + k4) ,
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A(x) =
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2−Ra2
sα

2
1α2ṁ
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sα1ṁ
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2
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
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where

k1 = φ(xk, tk) ,

k2 = φ

(
xk +

∆t

2
k1, tk +

∆t

2

)
,

k3 = φ

(
xk +

∆t

2
k2, tk +

∆t

2

)
,

k4 = φ (xk +∆tk3, tk +∆t) ,

xk = x(tk) and tk = k(∆t). Further, it satisfies the
Courant-Friedrichs-Lewy condition, given in [29], [35], for
numerical stability. The proposed partially-distributed EnKF
based SFDIA architecture is discussed in the following section.

III. PROPOSED ARCHITECTURE

Fig. 1 illustrates various steps of the proposed architecture.
The sensor measurements are initially grouped into several
unique sets of sensor measurements and are assigned to
specific local filters. The proposed partial-distributed archi-
tecture subsequently performs fault-free state estimation using
the following steps: (1) The main filter first carries out the
nonlinear computation (time update). (2) The linear local filters
then execute the measurement updates, estimating the local
state vectors and their associated covariance matrices using
their specific subset of measurements. (3) Then, sensor faults
are identified by comparing the state variance vector with an
adaptable threshold, computed using the state variance vector.
(4) The faults are accommodated using the local state residual
vector, and the faulty local state estimate is substituted with a
corrected non-faulty a priori estimate. (5) The global estimates
are finally computed using the corrected local state estimates in
the information mixture. The final estimates are fed to the main
filter for initialization during the subsequent iteration. In the
following subsections, the state estimation and fault diagnosis
by the proposed partial-distributed filter are discussed in detail.

A. Sensors grouping

Initially, the locals and their associated subset of mea-
surements are defined, ensuring each local filter has unique
measurements. With M sensors and N filters, each filter
processes M/N measurements1. This grouping guarantees
that the local filters generate similar state vector estimates
using their specific measurements in the absence of faults,
facilitating fault detection. This approach effectively identifies
faulty sensors, thereby offering a resilient solution. However,
it should be noted that this method is optimal only for
uncorrelated sensor measurements. Subsequently, the design
of the partial-distributed EnKF-based filter is discussed next.

1N/M is an integer number.
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Fig. 1: The proposed partial-distributed architecture.

B. Partially-Distributed EnKF-based Architecture

The nonlinear state-space model can be expressed as

xk = f(xk−1,uk−1) + vk ,

yi,k = hi(xk,uk) + ni,k ,

where f(·, ·) : Rnx × Rnu → Rnx is the nonlinear mapping
of the main filter with xk ∈ Rnx×1 being the state vector
during the kth time instant. Further, yi,k ∈ Rny×1 denotes the
measurement vector corresponding to the ith local filter, where
i = 1, 2, . . . , N . The input vector uk−1 ∈ Rnu×1 includes
both initial uin and boundary ubc,k−1 conditions. Addition-
ally, the mapping corresponding to the measurement model
for the ith local filter is considered linear, i.e., hi(xk,uk) =
Hixk. The aim is to reduce the dimension of the state vector
through one-to-one mapping based on measurements allocated
to each local filter. Moreover, vk ∈ Rnx×1 ∼ N (0,Qk) and
ni,k ∈ Rny×1 ∼ N (0,Ri,k) represent the process noise and
measurement noise, respectively.

The different steps of the state estimation procedure in-
volved in the proposed partially distributed EnKF architecture
are elaborated next.
Step 0: Initialization:

The initial state vector estimate x̂0|0 is fixed in the first step.
Step 1: Main filter nonlinear computation:

An ensemble of samples, denoted by
{
x̂
(j)
k−1|k−1, 1 ≤

j ≤ Ne

}
, is generated to represent the distribution

p(xk−1|Yk−1), with Ne being the ensemble size and Yk−1 =
{y1,y2, . . . ,yk−1}. The ensemble of the state vector estimate,
denoted by Xk−1|k−1 ∈ Rnx×Ne , is generated as

x̂
(j)
k−1|k−1 = x̂k−1|k−1 + v

(j)
k−1 , j = 1, 2, . . . , Ne . (4)

Further, the a priori ensemble associated with p(xk|Yk−1) can
be obtained as
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x̂
(j)
k|k−1 = f

(
x̂
(j)
k−1|k−1,u

(j)
k−1

)
+ v

(j)
k . (5)

This a priori ensemble is subsequently shared with N linear
local filters, each incorporating its distinct local measurement
subset, to generate a posteriori local state estimate x̂i,k|k.
Step 2: Local filter linear computation:

In each local filter, an ensemble of measurement samples is
generated. For the ith local filter, an ensemble

{
ŷ
(j)
i,k|k−1, 1 ≤

j ≤ Ne

}
, representing p(yi,k−1|Yi,k−1), is generated, which

can be obtained as

ŷ
(j)
i,k|k−1 = Hix̂

(j)
k|k−1 + n

(j)
i,k , (6)

where Yi,k−1 = {yi,1,yi,2, . . . ,yi,k−1} and yi,k−1 =[
y[MN (i−1)+1],k−1, . . . , y[MN (i−1)+M

N ],k−1

]T
. The mean and co-

variance of the measurement ensemble
{
ŷ
(j)
i,k|k−1, 1 ≤ j ≤

Ne

}
can be expressed as ŷi,k|k−1 = 1

Ne

∑Ne

j=1 ŷ
(j)
i,k|k−1 and

P y
i,k|k−1 = 1

Ne−1E
y
i,k|k−1

(
Ey

i,k|k−1

)T
, respectively, where

Ey
i,k|k−1 =

[(
ŷ
(1)
i,k|k−1−ŷi,k|k−1

)
, . . . ,

(
ŷ
(Ne)
i,k|k−1−ŷi,k|k−1

)]
.

Likewise, the mean and covariance of the a priori state
ensemble can be computed as x̂i,k|k−1 = 1

Ne

∑Ne

j=1 x̂
(j)
i,k|k−1

and P x
i,k|k−1 = 1

Ne−1E
x
i,k|k−1

(
Ex

i,k|k−1

)T
, respectively,

where Ex
i,k|k−1 =

[(
x̂
(1)
i,k|k−1 − x̂i,k|k−1

)
, . . . ,

(
x̂
(Ne)
i,k|k−1 −

x̂i,k|k−1

)]
. The cross-covariance between xi,k|k−1 and

yi,k|k−1, given Yi,k−1, can be evaluated as P xy
i,k|k−1 =

1
Ne−1E

x
i,k|k−1

(
Ey

i,k|k−1

)T
.

Then, the a priori ensemble
{
x̂
(j)
i,k|k−1

}
can be updated

using the latest measurement yi,k as

x̂
(j)
i,k|k = x̂

(j)
i,k|k−1 +Ki,k

(
yi,k − ŷ

(j)
i,k|k−1

)
, (7)

Ki,k = P xy
i,k|k−1

(
P y

i,k|k−1

)−1

. (8)

Finally, the a posteriori state estimate and covariance can be
computed as

x̂i,k|k =
1

Ne

Ne∑

j=1

x̂
(j)
i,k|k ,Pi,k|k =

1

Ne − 1
Ex

i,k|k

(
Ex

i,k|k

)T
,

with Ex
i,k|k =

[(
x̂
(1)
i,k|k − x̂i,k|k

)
, . . . ,

(
x̂
(Ne)
i,k|k − x̂i,k|k

)]
.

Following the state estimation using the sensor measurements,
fault detection and isolation are performed.
Step 3: Fault detection and isolation:

The metric such as the state-variance vector, denoted by
ξk ∈ Rnx×1, is used for fault detection, which is defined as

ξ
(ℓ)
k =

1

N

N∑

i=1

(
x̂
(ℓ)
i,k|k − 1

N

N∑

i=1

(
x̂
(ℓ)
i,k|k

))2

, (9)

where x̂
(ℓ)
i,k|k specifies the ℓth element of the ith local state

vector estimate x̂i,k|k. Utilizing the grouping outlined in
Subsection IIIA, each local subset of measurements only
affects its corresponding elements in the local state vector [27].

Thus, this grouping enables the generation of independent
local estimates. Further, the state-variance vector assesses the
variations in these independent local state vector estimates.
The elevated values in the state-variance vector indicate faults,
which are identified through a comparison with a predefined
threshold, i.e., ξ(ℓ)k > γ

(ℓ)
th . This detection threshold is further

improved using an adaptive thresholding approach [27], that
enhances the effectiveness of sensor fault detection in highly
dynamic conditions [36], [37].

An error metric Ek ≜
[
e
(1)
k , e

(2)
k , e

(3)
k , . . . , e

(M)
k

]
∈

Rm×M is used for adaptive thresholding, where M is the
total number of sensors. The vector e

(ℓ)
k ∈ Rm×1 consists

of the local state-variance entries ξ
(ℓ)
k , which satisfy the

condition ξ
(ℓ)
k < γ

(ℓ)
th . The moving time window length

m remains constant under the non-faulty scenario and be-
comes variable in the presence of faults such that m ≥
mt, where mt is the lower bound on the window length.
Consequently, the vector e

(ℓ)
k can be defined as e

(ℓ)
k =[

ξ
(ℓ)
k−m, ξ

(ℓ)
k−m+1, . . . , ξ

(ℓ)
k−1, ξ

(ℓ)
k

]T
. Moreover, the mean and

variance of e
(ℓ)
k can be obtained as µ

(ℓ)
e,k = 1

m

∑k
j=k−m ξ

(ℓ)
j

and σ
(ℓ)
e,k = 1

m

∑k
j=k−m

(
ξ
(ℓ)
j − 1

m

∑k
j=k−m

(
ξ
(ℓ)
j

))2
, respec-

tively. Further, the adaptive threshold using these variables can
be computed as

γ
(ℓ)
k = rµ

(ℓ)
e,k + λσ

(ℓ)
e,k, (10)

where the tuning factors r and λ are chosen based on the
use-case.

The faulty sensors/locals can be identified using the local
state-variance values. If the state-variance value ξ

(ℓ)
k exceeds

the threshold γ
(ℓ)
th , it signifies a fault in the ℓth position

sensor and the local filter processing that specific sensor
measurement. Since the faulty measurements only affect their
respective local state estimates, therefore, by identifying the
locations of the faulty measurements one can readily identify
the faulty locals using the state-variance vector [27]. The resid-
ual metric is utilized for fault isolation and to accommodate
the faulty local estimates. This metric can be expressed as

r
(ℓ)
i,k =

∣∣∣∣∣x̂
(ℓ)
i,k|k − 1

N

N∑

i=1

(
x̂
(ℓ)
i,k|k

)∣∣∣∣∣ . (11)

The residual entry is non-zero only when its associated local
filter measurement is faulty. Otherwise, residual entries remain
zero when the locals generate accurate estimates based on their
respective non-faulty measurements. Hence, one can identify
and eliminate the faulty estimates during the data fusion
by analyzing the residual vector entries. After identifying
the faulty local, its faulty local state estimate x̂i,k|k can be
corrected using the local state residual vector ri,k as

x̂
(ℓ)
i,k|k =

{
x̂
(ℓ)
i,k|k, r

(ℓ)
i,k < γ

(ℓ)
th

x̂
(ℓ)
i,k|k−1, r

(ℓ)
i,k > γ

(ℓ)
th

, (12)

where γ
(ℓ)
th denotes the threshold to identify the faulty local

state estimate. Upon identifying the fault, the ℓth entry of the
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Fig. 2: Simulated data using system model.
faulty ith local filter state estimate x̂

(ℓ)
i,k|k is substituted with the

ℓth entry of the a priori ith local filter state estimate x̂
(ℓ)
i,k|k−1,

which is not affected by the faulty local measurement. After
correcting the faulty estimate, the local state estimate is
combined using the information fusion.
Step 4: Information fusion in the main filter:

Using the a posteriori state estimates and covariance ma-
trices of N local filters, the global a posteriori state estimate
x̂k|k and the global state covariance matrix Pk|k corresponding
to the main filter can be evaluated as [23]

Pk|k =

(
N∑

i=1

P−1
i,k|k

)−1

, x̂k|k = Pk|k

N∑

i=1

P−1
i,k|kx̂i,k|k. (13)

The final state estimate x̂k|k is subsequently used as a prior
information during the next iteration.

IV. SIMULATION RESULTS AND DISCUSSION

We assess the performance of our proposed design using the
simulated data generated by the transient flow model detailed
in Section II. The parameters for the simulation are L = 150
km, d = 1.4 m, ϵ = 0.016 mm, Ts = 5oC, and U = 2.84
Wm−2K−1. The boundary conditions are set as p(0, t) = 8.4
MPa and T (0, t) = 303.15 K, ṁ(L, t) = f(t), covering a time
interval of tf ∈ [0, 3600 s]. The spatial and temporal step sizes
are ∆s = 7500 m and ∆t = 10 s, respectively. The simulated
data without any observation noise is illustrated in Fig. 2.

To assess the state estimation of the proposed architecture,
we introduce the measurement noise under three signal-to-
noise ratios (SNRs): low, moderate, and high. The distribution
of the measurement noise for these scenarios is presented in
Table I. We consider M = 63 sensors and N = 3 locals for
our experiments, where each local filter receives 21 sensor
measurements. An ensemble size of Ne = 120 is selected for
optimal performance of the proposed EnKF framework. The
standard deviation of the process noise is set to be 10% lower
than that of the measurement noise. Both covariance matrices
Qk and Ri,k are considered diagonal, where the diagonal

Measurement Pressure Flow rate Temperature
noise

High SNR N (0, 0.000052) N (0, 0.252) N (0, 0.152)
Moderate SNR N (0, 0.00052) N (0, 2.52) N (0, 1.52)

Low SNR N (0, 0.0052) N (0, 102) N (0, 62)

TABLE I: Distribution of measurement noise for various SNR
scenarios.

Pressure Flow Temperature
SNR Filter (10−3 rate (K)

MPa) (kg/s)

High

Proposed (Partial-Distributed) 0.5701 0.8916 0.2024
Proposed (Fully-Distributed) 0.5549 0.8722 0.1721

Fusing UKF 0.398 0.8561 0.3220
MM-SFDIA 0.548 2.34 2.6338

Moderate

Proposed (Partial-Distributed) 0.5299 0.8445 0.1893
Proposed (Fully-Distributed) 0.5617 0.8802 0.1987

Fusing UKF 0.1230 0.6463 0.3472
MM-SFDIA 0.535 2.5235 2.9985

Low

Proposed (Partial-Distributed) 0.7926 1.9119 0.7665
Proposed (Fully-Distributed) 1.044 1.72 0.8276

Fusing UKF 0.227 0.8972 0.3761
MM-SFDIA 7.8150 46 40.8613

TABLE II: Comparing the RMSE of different filters in non-
faulty scenarios.

entries represent the variances of the process and measurement
noise, respectively.

The estimation performance is evaluated in terms of the
root mean square error (RMSE) in both spatial and tem-
poral dimensions [27]. The estimation performance of the
proposed technique is compared against different baselines,
including the proposed fully-distributed architecture, UKF
[23], and model-based multi-sensor fault detection, isolation,
and accommodation (MM-SFDIA) [27], all utilizing the fully
distributed filtering. In the proposed fully distributed filtering
architecture, all local filters perform nonlinear time updates
and linear measurement updates, while the main filter focuses
on information fusion. It can be observed from the RMSE
results, given in Table II, that our proposed design achieves
a comparable level of estimation accuracy as that of the
fully distributed technique and other baselines. Our approach,
leveraging the partial-distributed state estimation, maintains
comparable estimation accuracy while significantly reducing
the computational requirements.

To evaluate the proposed estimation method with the SF-
DIA mechanism, synthetically generated faults (bias and drift
[9]) are introduced in the simulated data obtained from the
transient-flow model. For the adaptive thresholding, m, mt

are considered as m = 10 and mt = 5, respectively. For per-
formance evaluation in a multiple sensor fault scenario, three
simultaneous bias and drift faults are introduced to the pres-
sure, flow rate, and temperature sensors (indexed at ℓ = 12, 35,
and 51, respectively) for 300 s ≤ t ≤ 500 s. As depicted
in Fig. 3, our proposed architecture demonstrates superior
performance compared to other techniques. The detection per-
formance is assessed through receiver operating characteristic
(ROC) plots, indicating probabilities of detection and false
alarms per sample. These plots are generated by varying the
tuning parameters (r and λ) of the adaptive threshold. Results
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Fig. 3: State estimation techniques comparison (classic EnKF
(cyan), fusing UKF (green) [23], MM-SFDIA (gray) [27],
proposed without SFDIA (orange) and proposed with SFDIA
(red) in the presence of three simultaneous bias and drift faults
occurring at indices ℓ = 12, 35, 51. Bias and drift fault results
are depicted in plots (a)-(c) and plots (d)-(f), respectively.
Actual values are indicated in black, while faulty values are
shown in blue.

in Fig. 4 illustrate that our technique achieves significantly
higher detection probability and considerably lower false alarm
probability, especially in weak fault scenarios, compared to
a recently introduced multi-sensor fault diagnosis approach
MM-SFDIA [27].

Additionally, the computational complexity in terms of
the execution time and the number of local filters required
to address both single and multiple faults, is expressed in
Table III. These results distinctly illustrate that our proposed
architecture notably reduces the execution time and utilizes
fewer local filters in scenarios involving both single and
multiple faults. Furthermore, Table IV presents a comparison
for single fault detection. The results demonstrate that the
proposed approach outperforms the fusing UKF technique
[23], specifically tailored for the single fault scenario.
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Fig. 4: ROC plots indicating the detection performance of
proposed partial-distributed (blue) and MM-SFDIA [27] (red)
for three simultaneous faults of different types (a) strong bias,
(b) weak bias, (c) strong drift, and (d) weak drift.
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Fig. 5: Fault isolation and detection visualization of the
proposed architecture.

Moreover, the fault isolation capability of the proposed
method in the presence of multiple faults, with a focus on weak
bias faults, is illustrated in Fig. 5. We consider 50 samples
to generate the results. In the figure, ◦ symbol denotes the
actual fault and None signifies a scenario without any faults
within the system. The falsely detected sensor fault is specified
with the ∗ symbol, and the + symbol indicates the correctly
identified fault. The proposed architecture effectively detects
all faults with only a few instances of false detection.
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Method Sensors 1 Fault Case Multiple 3 Faults
Execution Time (seconds) Number of locals Execution Time (seconds) Number of locals

Proposed (Partial-Distributed) 63 0.57s 3 0.57s 3
Proposed (Fully-Distributed) 63 1.049s 3 1.049s 3

MM-SFDIA 63 3.27s 3 3.27s 3
Fusing UKF 63 27.11s 63 17955.57 41727

TABLE III: Comparing the computational complexity of the proposed partial-distributed design with the proposed fully-
distributed, MM-SFDIA, and fusing UKF in terms of the execution time and the number of locals required for handling single
and multiple fault cases.

Fault Type Proposed (Partial-Distributed) MM-SFDIA Fusing UKF

Pressure Weak Bias 100 100 100
Weak Drift 100 100 100

Flow rate Weak Bias 100 100 100
Weak Drift 100 85.56 83.89

Temperature Weak Bias 100 100 97.92
Weak Drift 100 99.72 90.83

TABLE IV: Comparing the detection accuracy (%) of the proposed partial-distributed design with MM-SFDIA, and fusing
UKF for single fault detection case while considering different fault types.

V. CONCLUSIONS

This paper introduces a novel approach for state esti-
mation and sensor fault diagnosis in natural gas pipelines
experiencing transient flow. The proposed method utilizes a
partial-distributed EnKF framework, separating the nonlinear
computations from the local filters to the main filter, thereby
significantly reducing the computational overhead. A new
fault detection and isolation technique, leveraging the local
state variances and local state residuals, is developed for
simultaneously occuring multiple sensor faults. Further, adap-
tive thresholding is introduced to enhance the fault detection
accuracy. Simulations demonstrate the effectiveness of the pro-
posed architecture in accurately detecting and isolating mul-
tiple simultaneous sensor faults. Future work aims to address
process-related faults, fault detection in pipelines with varying
operating conditions, and design of control laws/observers for
governing PDEs.
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